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Effect of vorticity on steady water waves
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Two-dimensional, finite-depth periodic steady water waves with variable vorticity
ω = γ (ψ) and large amplitude a are computed for a large number of cases. In
particular, the effect of a shear layer at the top, the middle or the bottom is considered.
The maximum amplitude amax varies monotonically with the vorticity function γ (·). It
is increasing if the stagnation point is at the crest, and is decreasing if the stagnation
point is in the interior of the fluid or on the bottom. Relationships between the
amplitude, hydraulic head, depth and mass flux are investigated.

1. Introduction
Evidence from experimental studies shows that qualitative features of water waves

can be greatly affected by the presence of vorticity. However, numerical studies on
rotational water waves have been almost entirely restricted to the simplified setting
of constant vorticity. These studies have consistently shown that features such as the
shape of the wave, the amplitude of the crest, and the presence of eddies differ from
those found in the irrotational setting. There may be ‘extreme’ or ‘breaking’ waves
with points of stagnation. They indicate the possibility of eddies or of overhanging
wave profiles. The irrotational case is the only one for which there is a complete
picture of an extreme wave. This is the extreme Stokes wave, for which the only point
of stagnation is the crest with an angle of 120◦. However, theoretical work concerning
extreme rotational waves is quite sparse.

In the present work, we compute families of periodic water waves with variable
vorticity and large amplitude. It is a continuation of Ko & Strauss (2008) in which our
focus was the constant vorticity case. In the present paper, our main concern is the
study of vorticities that are not constant. The vorticity can be completely arbitrary.
A layer of non-zero vorticity can occur near the surface owing to the action of
wind. Vorticity of an ocean wave near the shore can occur because of the topo-
graphy of the bottom. A steady water wave is often a good model on a short time
scale. We emphasize that our calculations make no shallowness or small-amplitude
approximation.

We do assume that the water is incompressible and inviscid without surface tension,
lies over a flat bottom, and is acted upon by gravity g. We assume that the waves
are two-dimensional, periodic and of permanent form. Then the only remaining free
parameters are the period 2L, the Bernoulli constant Q (which is related to the
hydraulic head, i.e. the energy of the wave), the relative mass flux p0, the speed c

of the wave, and of course the vorticity function γ (·) where ω = γ (ψ). The average
depth d is determined implicitly in terms of the other parameters. We treat Q as a
bifurcation parameter, thereby generating a one-parameter family of waves, for each
choice of the other parameters. Each wave profile in the family has one crest and one
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trough per period and is even around the crest. There are waves in the family that
have points that approach stagnation.

Our principal aim is to investigate how the amplitude, shape, depth and stagnation
points of a wave depend on the vorticity function γ , Bernoulli constant Q, and relative
mass flux p0. Our computations suggest that the family of waves is a continuous
curve in function space. We will denote the computed family by C. For brevity, we
will subsequently refer to it as the ‘bifurcating curve’. Our simulations are unable to
generate waves with exact stagnation points, but we do approach stagnation. In this
paper we will simply refer to such a situation as ‘stagnation’. In our computations we
always normalize the period to be 2π. Our computations yield the following results.

(i) For given γ and p0, the amplitude a is an increasing function along the
bifurcating curve C. Therefore the maximum amplitude amax occurs at the end of C
(as far as the computation goes).

(ii) In every case we find that the stagnation point along C lies on the vertical line
below the crest. In contrast to the irrotational case, stagnation occurs either at an
interior point of the fluid or on the bottom directly below the crest if the vorticity is
sufficiently large and positive.

(iii) As the vorticity is varied for a given p0, the maximum amplitude amax varies
monotonically with the vorticity function γ (·). The location of the stagnation separates
the cases of increasing and decreasing amax. Specifically, if the stagnation point is
located at the crest and γ1(p) � γ2(p) for all p, then a1

max � a2
max. If the stagnation

point occurs elsewhere and γ1(p) � γ2(p) for all p, then a1
max � a2

max.
(iv) The maximum amplitude amax is an increasing function of the magnitude of

the flux |p0|, in the case of constant vorticity.
(v) The depth d varies only slightly along each continuum for fixed flux p0.
(vi) Generally, the hydraulic head, essentially Q, increases along the bifurcating

curve C and then decreases as stagnation is approached at the crest. The turning
point, where Q starts to decrease, moves closer to the end of the continuum as the
vorticity function increases. On the other hand, if the stagnation occurs in the interior
or at the bottom, then there may be no turning point.

We pay particular attention to vorticities that are non-zero in a surface layer and
are zero (irrotational) below that layer (see § 3). Such a vorticity is a simple model of a
wave under the influence of wind at the surface because the wind creates vorticity near
the surface, as is well known. A favourable wind will produce negative vorticity, while
an adverse wind will produce positive vorticity. Our results show that the maximum
amplitude will occur for a relatively large positive vorticity. They also show that a
favourable wind, which corresponds to negative vorticity, tends to make waves break
sooner.

In § 4, we also consider a vorticity layer at the bottom, which could happen, for
instance, near an ocean shore. Then we consider a middle shear layer, which is an
example of a non-monotone vorticity function. Finally, we consider a continuous
distribution, in order to emphasize that our results do not depend on the discon-
tinuities of γ (·).

In this paper and Ko & Strauss (2008), we numerically follow the bifurcating curve
C using the parameter Q. We do not use truncated Fourier modes, shallow-water
or small-amplitude approximations. Instead, we solve the fully elliptic system that
results from the Dubreil-Jacotin (DJ) transformation (see below) along the bifurcating
curve, using standard finite differencing and nonlinear solvers, as well as the efficient
numerical continuation library TRILINOS.
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There is of course a huge literature concerning irrotational waves, especially in
various small-amplitude and shallow-water approximations (Milne-Thomson 1996;
Johnson 1997; Lighthill 2001). If the vorticity ω is a constant, we can introduce a
pseudostreamfunction that is a harmonic function, in analogy with the irrotational
case. Thus the Euler equations can be converted via the Cauchy integral theorem to a
boundary-integral formulation. This formulation is relatively easy to solve numerically
(but not theoretically). The first to use this approach were Simmen & Saffman (1985)
who considered periodic waves with infinite depth and Teles da Silva & Peregrine
(1988) who treated periodic waves with finite depth. Teles da Silva & Peregrine showed
that eddies can form at the finite bottom directly below the crest if the vorticity is
positive and large enough. If the vorticity is negative, an extreme wave can form with
stagnation at the crest, but it does not have the same shape as in the irrotational
case. Their key paper clearly shows that vorticity can have a profound effect on the
shape of the wave.

Using the same method, Vanden-Broeck (1994, 1995) and Okamoto & Shoji (2001)
computed various families of solitary waves with finite depth and constant vorticity,
obtaining results consistent with those of Teles da Silva & Peregrine. Miroshnikov
(2002) also considered solitary waves using the same basic formulation. However, in
his work the water has to be shallow and the numerical method is based on several
approximations including an expansion in powers of the depth. As Teles da Silva &
Peregrine did, Miroshnikov found eddies forming at the bottom if the vorticity is
positive, but, in direct contradiction to the results of both Teles da Silva & Peregrine
and Vanden-Broeck, he also found eddies forming near the crest. Sha & Vanden-
Broeck (1995) computed solitary waves in the case of a surface or bottom shear layer,
but their waves are not periodic, they did not compute large families of waves, and
they did not find any bottom or interior stagnation points.

A few papers have dealt with the case of variable vorticity. Dalrymple (1977) used
a method based on the Dubreil-Jacotin transformation (see below), which permits the
treatment of an arbitrary vorticity distribution but cannot treat overhanging waves.
In fact, Dubreil-Jacotin (1934) had been the first to provide any theoretical analysis
of waves with general vorticities. Dalrymple specified all the physical constants and
therefore he computed only particular examples in each run. He computed just two
particular examples in detail, one with constant vorticity and one with a vorticity
satisfying a power law.

Thomas (1990) also used the Dubreil-Jacotin method similarly to Dalrymple,
computing individual waves, but included a background current and performed
the computation using truncated Fourier modes. Solitary waves in the presence
of a background current had been considered by Benjamin (1962). Comparing his
numerical results with experimental data, Thomas’ key conclusion was that the
vorticity does have a major influence on the nature of the wave.

Swan, Cummins & James (2001) undertook an experimental and numerical study
of time-dependent waves propagating on a strongly sheared current with a non-
constant vorticity distribution. They found, experimentally, that a negative vorticity
distribution can have several main effects on the gross appearance of a wave. There
may be greater crest–trough asymmetry (with a broader trough and a sharper crest).
The wave may be steeper than in the irrotational case and thus the local acceleration
of the water particles can be greater. Even if the vorticity is confined to the upper
layers of the water, the flow is modified over the entire water depth. (Note that what
Swan et al. call ‘negatively sheared’ is what we call ‘positive vorticity’, and vice versa.)
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In order to fix our notation, we now write the governing equations in the moving
frame for steady water waves travelling at speed c. They are

�ψ = −γ (ψ) in {−d < y < η(x)},
|∇ψ |2 + 2 g(y + d) = Q on {y = η(x)},
ψ = 0 on {y = η(x)},
ψ = −p0 on {y = −d},

where ψ is the relative streamfunction (ψx = −v, ψy = u − c), ω = γ (ψ) is the vorticity,
S = {y = η(x)} is the free surface, and p0 =

∫ η(x)

−d
(u − c) dy < 0 is the relative mass flux

which is independent of x. The Bernoulli constant Q is given by Q =2(E + gd), where
E is the hydraulic head of the flow. We assume that u < c throughout the fluid and
that the profile has period 2L in x, is even around the crest and is monotone from crest
to trough. The DJ transformation q = x, p = −ψ(x, y) has the effect of transforming
the free-boundary problem given above into the boundary-value problem(

1 + h2
q

)
hpp − 2hphqhpq + h2

phqq = −γ (−p)h3
p in R,

1 + h2
q + (2gh − Q)h2

p = 0 on p = 0,

h = 0 on p = p0,

⎫⎪⎬
⎪⎭ (1.1)

in the fixed rectangle R = (−L, L) × (p0, 0) where the height above the flat bed
h(q, p) = y + d is even and has period 2L in the q-variable. We take q = x =0 to
correspond to the crest and q = x = L to the trough. Note that the Jacobian of the
transformation is −ψy = c − u.

Working with this reformulation (1.1) of the water-wave problem and using
bifurcation and degree theory, the existence of a global connected set of smooth
solutions was proved in Constantin & Strauss (2004), for any constant c > 0 and any
smooth function γ , if p0 < 0 is subject to a size restriction. This connected set contains
both laminar (‘trivial’) flows and waves with the value of u arbitrarily close to the
wave speed c at some point. A point where u(x, y) = c is a stagnation point, which
means that the Jacobian vanishes. Notice that the speed c is completely arbitrary as
it does not appear explicitly in the mathematical formulation (1.1) of this finite-depth
problem. For further details of the mathematical theory, see Okamoto & Shoji (2001),
Constantin & Escher (2004), Constantin & Strauss (2004, 2007), Hur (2007) and
Varvaruca (2008).

Details of our numerical procedure are given in Ko & Strauss (2008). In all our
computations, with mks units in mind, we choose horizontal period 2L = 2π and
g = 9.8. The horizontal mesh size M and the vertical mesh size N are chosen to be
either M = 250, N = 500 or M =N = 500. For the sake of visibility, in the figures of
waves (except figure 7) we have printed only every tenth streamline. The vertical axis
for all the figures of the waves corresponds to the value of y + d; a value of 0 on
this axis corresponds to the finite bottom y = −d . Since the Jacobian corresponding
to our discretization is nearly singular close to stagnation, the step sizes in Q become
increasingly small as we approach waves with a stagnation point. Our determination
for whether a wave has a point near stagnation involves a careful calibration of the
convergence tolerances for the solvers as well as the requirement that the minimum
value of c − u be less than 10 % of its value at the initially bifurcating wave. This
modest criterion is based on extensive computations for two base cases in the constant
vorticity setting, for which an extremely small fixed step size was used near stagnation.
For these runs, we were able to push the minimum value of c − u to 1 % of its initial
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Figure 1. Waves near stagnation for four subcritical constant vorticities.

value with only a 3 % increase in the amplitude. These runs show that first-order
accuracy is qualitatively correct, being a good approximation to the wave with a
stagnation point.

In § 2, we treat the case of constant vorticity; in § 3, the case of surface shear; and
in § 4, several other cases of variable shear. In § 5, we consider the behaviour of the
waves as a function of the flux p0.

2. Constant shear
In this section, we consider the case that the vorticity is a constant. This was

also the focus of Ko & Strauss (2008), but since then we have investigated several
additional properties.

One of the key observations in Ko & Strauss (2008) was that, given the relative
mass flux p0 and the period 2L of the wave, there is a critical value γcrit of the
vorticity that separates the cases for which the first stagnation occurs at the crest or
on the bottom. For L = 2π, g = 9.8 and p0 = −2, we found that γcrit ≈ 2.96. The
streamlines are level curves of the velocity potential ψ . Vertical separation of two
nearby streamlines occurs where ψy = u − c is small, that is, near a stagnation point.
Although we did not assume that stagnation could occur only at the crest A or the
point B on the bottom just below the crest, we in fact found that our simulations
produced only these two locations on the boundary as points of stagnation.

Moreover, we compared waves near stagnation with p0 = −2 for various vorticities
and found that vorticity influences the shapes of their profiles (figure 1). Positive
vorticity leads to a sharper, higher crest, while negative vorticity leads to a lower,
more localized crest.

Since Ko & Strauss (2008), we have further investigated the amplitude a of the crest
and the average depth d . Our interest is in studying the amplitude and depth of the
waves both along the bifurcating curve C and as a function of the vorticity. Figure 2
shows the values of a and d of the waves along C for four constant vorticities. Each
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Figure 2. Amplitudes (◦) and depths (×) of waves along the bifurcation curves for
(a) γ = −4, (b) 0, (c) 2.95, (d) 3.

data point in the figure refers to a computed wave along the bifurcating curve. The
spacing of the data points is uneven because the program takes adaptive step sizes
in the bifurcation parameter Q according to a combination of an initial step size
specified by the user and the stiffness of the Jacobian. We see from figure 2 that the
data points are tightly clustered in the beginning of the bifurcation curve because
the initial step size that is specified is very small, and again near stagnation since the
Jacobian tends to become quite stiff near stagnation.

As for the depth d , in all of our computations, we find that d varies only a little
as we move along the bifurcating curve C. Furthermore, d does not vary much as a
function of the vorticity ω = γ .

The amplitude a is more interesting. We find that a is always monotonically
increasing as we move along C. The graph of a as a function of the bifurcation
parameter Q provides a nice cartoon of C and we will often refer in subsequent
sections of this paper to this depiction of a along C as if it were the bifurcating
curve itself. In figure 3, four waves along C for a given vorticity (γ = 2.95) are
represented as data points in this cartoon. The last data point along the bifurcating
curve corresponds to a wave that is nearly stagnant. In figure 1, there are four surface
profiles corresponding to waves that are the very last points along their computed
bifurcating curves.
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Figure 3. Each data point along the bifurcating curve represents a wave. At the right-hand
side we show the wave shape and the streamlines for four waves along the bifurcation curve
for γ = 2.95. The last point along the bifurcation curve corresponds to a wave near stagnation.

Since a is increasing along C, the maximum amplitude amax along the bifurcating
curve occurs at the last computed point of C. We can therefore investigate amax as
a function of γ . We find that amax increases as a function of γ as long as γ < γcrit.
Thus, the maximum amplitude occurs for the extreme wave associated with γ = γcrit.
On the other hand, amax decreases for γ >γcrit. Figure 4 plots amax as a function of γ .
We see that amax climbs to a sharp peak near γcrit and then experiences a precipitous
drop. In this case, 2.95 <γcrit < 3. In particular, note the very rapid dropoff of the
amplitude from γ = 2.95 to the nearby value γ = 3 in figures 2 and 4. Also note that
negative vorticity tends to lead to low-amplitude waves that stagnate at their crests.
This may be interpreted to say that a favourable wind will lead to waves that break
more easily.

In the course of many runs, we made various checks for other qualitative features
of the bifurcating curve C itself. We find that the subcritical and supercritical cases
separated by γcrit seem to be further distinguished by the existence of a turning point
in C where Q changes monotonicity (figure 2). For γ < γcrit, there is a turning point
in C and for γ >γcrit there is none. Notice that the turning point for γ = −4 occurs
in the middle of C, in contrast to the turning point occurring near stagnation for the
other values of γ illustrated in figure 2. The case γ = 3 is supercritical and has no
turning point.
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Figure 5. Amplitude plot for 10% surface shear with shear value γ0 = 10.

3. Surface shear
It is known experimentally that wind typically has the effect of producing vor-

ticity in the water near the surface. In order to model this situation, we consider
a shear vorticity layer of some uniform thickness (|p0|/100)θ with respect to the
streamfunction, below which the fluid is irrotational. Since the vorticity ω = γ (ψ)
is necessarily constant on the streamlines, we therefore take γ (ψ) = γ0 for 0 < ψ <

(|p0|/100)θ and γ (ψ) = 0 for (|p0|/100)θ < ψ < |p0|. Thus, θ is the percentage of fluid
with vorticity γ0.

Taking cues from our investigation of the constant vorticity case, we pay particular
attention to the following characteristics of our computed waves: the location of
first stagnation points, the shape of nearly stagnant waves, and the amplitude and
depth of waves along the bifurcating curve up to stagnation. Figure 5 illustrates the
bifurcating curve C and highlights four points along C for a 10 % shear layer (θ = 10)
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Figure 6. Four waves along C for a 10 % shear surface layer vorticity with γ0 = 10.

with shear value γ0 = 10. The corresponding waves are shown in figure 6. In this case,
and in fact in all of our computations, we find that the first stagnation point always
occurs along the line AB directly below the crest. The right-hand column of figure 6
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θ\γ0 −1 1 4 10 15 18 19 20 30 100

2 A A A A A A A A A I
5 A A A A A A I I I I

10 A A A A A I I I I I
20 A A A A A I I I I I
25 A A A A I I I I I I
30 A A A A I I I I I I
35 A A A I I I I I I I
40 A A A I I I I I I I
50 A A A I I I I I I I
70 A A A I I I I I I I
90 A A A I I I I I I I

100 A A B B B B B B B B

Table 1. Location of first stagnation points for waves with surface shear. They can occur at
the crest (A), internally (I) or at the bottom (B) along the line below the crest depending on
the thickness of the shear layer (θ ) and the value of the vorticity in the layer (γ0).
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Figure 7. Internal stagnation occurs even for 2 % surface shear layer with γ0 = 100.

plots the values of c − u along this line for these four waves. Notice that only in the
last instance along C does the crest A finally become close to stagnation.

Embarking on a more systematic treatment of this class of vorticities, we consider
the location of the first stagnation point as a function of both the thickness θ of the
layer and the magnitude γ0 of the vorticity in that layer. As previously mentioned,
we find that for all the vorticity functions that we consider, the first stagnation
points occur along the line AB below the crest. In contrast to the constant vorticity
case, however, we find that internal stagnation points can occur for such a variable
vorticity. Whenever the first point of stagnation is internal, its exact position is the
intersection of the streamline ψ = (|p0|/100)θ with the vertical line through the crest.
Many results are summarized in table 1. The case of constant vorticity, corresponding
to the last row θ = 100, is included for the sake of comparison. Negative vorticity
always yields relatively small, peaky waves that stagnate at their crests.

We find that the location of first stagnation is at the crest (A) but that it becomes
internal (I) as γ0 becomes sufficiently large and positive and also (sometimes) as the
layer becomes sufficiently thick. Figure 7 illustrates a wave with a very thin vorticity
layer of very large shear (2 % layer, +100 shear) with an internal stagnation point.
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Figure 8. Surface shear. Top row: γ0 = 10, θ = 25, stagnation at the crest. Bottom row:
γ0 = 10, θ = 35, internal stagnation.

We find that stagnation occurs at the bottom in the case of constant vorticity larger
than γcrit ≈ 2.95.

Figure 8 illustrates two waves with γ0 = 10, one with thickness 25 % that stagnates at
the crest and the other with thickness 35 % that stagnates internally. These examples
illustrate that some vorticity functions have bifurcating curves with turning points,
and others have none. So far, we have not developed a general rule either to predict
the presence of a turning point or to determine how many there are. Figures 2 and
8 suggest that the presence of a turning point is correlated with the occurrence of
stagnation at the crest. Most of the bifurcating curves that we have encountered have
either one turning point or none. However, figure 9, which illustrates C for θ = 5,
γ0 = 18, has two turning points.

Next, we consider the amplitude a. We find the same general principles as in the
constant vorticity case, namely, that a is monotonically increasing as we move along
C, but there is only a slight variation in d . Since a is always increasing along C
up to the point of first stagnation, it is meaningful to compare amax, the amplitude
corresponding to the waves at the end of the computed bifurcating curve, as a function
of vorticity. As is evident from table 1, we can consider amax as a function of both
γ0 and θ . When we fix either one of these variables and consider amax as a function
of the other one (just restricting to any column or any row in table 1), we find
that amax increases as long as stagnation occurs at the crest, after which it decreases.
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Figure 10. amax(γ0) for 5 % shear surface layer.

Figure 10 plots amax as a function of the shear value γ0 for the row corresponding to
θ = 5 in table 1. Figure 11 plots amax as a function of the thickness θ for the column
corresponding to γ0 = 10.

Figure 12 plots the near-extreme wave profiles for θ =5 and for γ0 = −1, +1, 18, 30.
We see that the amplitude increases and then decreases. Figure 13 plots the profiles
for shear value γ0 = 10 for various layer thicknesses θ = 5, 20, 30, 40, 90. As we saw
in table 1 and figure 11, the cases of θ = 40 and 90 lead to internal stagnation and a
modest decrease of amplitude. The wave profile evidently changes more dramatically
as a function of the thickness θ of the shear layer than of the shear value γ0.

4. Variable shear
We also consider three other classes of vorticities: bottom shear layers, middle

shear layers and continuous shears. We report here only a few observations, leaving
open the possibility of further systematic studies.
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Figure 12. Wave profile as a function of shear value γ0 for fixed surface-layer thickness
θ = 5.

For bottom shear layers, we consider a layer of some uniform thickness (|p0|/100)θb

with respect to the streamfunction, with a constant shear value γ0 next to the bed,
above which the fluid is irrotational. This situation might occur near the ocean shore,
perhaps owing to tidal action. On the left-hand side of figure 14, we illustrate the case
of a thin layer at the bed γ0 = 4, θb = 10 and on the right-hand side, a thick layer
γ0 = 4, θb = 65. For γ0 = 4, our computations (not all shown) yield first stagnation
at the crest for θb � 60 and at the bottom for larger θb. The streamline separation at
the bottom is evident from figure 14 if θ = 65. The study of waves that break at the
bottom is important in sedimentation theory. These two locations, crest and bottom,
are consistent with the analytical result in Constantin & Strauss (2007), which states
that internal stagnation could never occur for a vorticity that increases with depth.
The bifurcation diagrams are also illustrated in figure 14. The two cases are further
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Figure 13. Wave profile as a function of surface-layer thickness θ for fixed shear value
γ0 = 10.

distinguished by the presence of a turning point in the bifurcation diagram for θb � 60
and the absence of a turning point for larger θb. Notice also that for θ = 65, there are
a very large number of iterations (the circles overlapping so much that they appear to
form a solid line in the bifurcation diagram) because the numerical problem is quite
stiff.

We provide just one illustration of a middle shear layer in figure 15. We choose
a thin layer of 5 % thickness located exactly in the middle of the basic interval
0 � ψ � |p0| and a vorticity value γ0 = 10. This vorticity function is obviously not
monotone. The shear layer induces a rapid change in the value of the relative velocity
u − c, as we can see from the right-hand side of figure 15. The illustration also shows
that this wave stagnates at the crest.

Now we demonstrate the basic irrelevance of the discontinuities of the previous
vorticity functions. For that purpose, we illustrate only the case of the continuous
vorticity function γ (p) = 10 tanh(10(p + 1)). It is designed to yield an internal
stagnation. Figure 16(a) shows the graph of vorticity vs. p = −ψ . It is rather steep, but
because there are 500 mesh points, it is indeed a continuous distribution. Figure 16(b)
illustrates the amplitude and depth along the bifurcating curve as a function of Q.
Note the turning point near stagnation. Figure 16(c) is the wave itself with a very
obvious separation of streamlines in the interior. Figure 16(d) shows that the wave is
indeed very close to stagnation at middle depth.

5. Effect of the flux
In all of our previous computations the relative mass flux p0 was taken to be

p0 = −2. In this section, we consider the effect of changing the value of the flux.
We first select a simple comparison of surface shears for two values of p0 to point
out some general differences. Figure 17 shows the free surfaces of four waves near
stagnation corresponding to surface shear vorticities given by shear thickness θ = 5 %
and shear values γ0 = 1 and 18 for both p0 = −2 and p0 = −4.
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Figure 14. Bottom shear. Left-hand column: γ0 = 4, θb = 10; stagnation at the crest. Right-
hand column: γ0 = 4, θb = 65; stagnation at the bottom below the crest. Second row: c−u along
vertical line AB . Third row: amplitude (◦) and depth (×) along C as functions of Q.

Immediately noticeable is the increase in depth d as we increase |p0|. This is to be
expected since an increase in |p0| translates to more fluid being transported in the
fixed reference frame. Since the depth does not vary much along the bifurcating curve
C, the increase in depth as a function of |p0| is seen for all waves along C. Next we
consider the location of the stagnation point. Referring back to the second row of
table 1, we see that if p0 = −2 and θ = 5, there is a value of the vorticity γ0 between
18 and 19 that separates the case of first stagnation at the top and that at the bottom.
The amplitude of the wave near stagnation is maximized at this critical value γ0,crit.
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Figure 15. 5 % middle shear layer with shear value γ0 = 10.
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Figure 16. Continuous vorticity. (a) Graph of the continuous vorticity γ (p)= 10 tanh
10(p + 1); (b) amplitude (◦) and depth (×) as functions of Q. (c) Wave streamlines, illustrating
internal stagnation; (d) c − u along the vertical line AB.

A similar statement can be made for a surface layer with p0 = −4 by fixing θ = 5
and varying γ0. For γ0 = 1, the first point of stagnation occurs at the top whereas for
γ0 = 18, this stagnation point occurs internally. Therefore the critical vorticity γ0,crit

that separates the two cases of top stagnation and internal stagnation is smaller
than 18.
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Figure 17. Surface streamlines for waves with surface shear vorticity for both p0 = −2 and
p0 = −4.

These general observations hold for any value of p0 as long as a bifurcating curve
C exists for the class of vorticities in question. It is known from Constantin & Strauss
(2004) that there might not exist a bifurcating curve at all, owing to the absence
of any local bifurcation from laminar flow if |p0| and γ are too large. For general
variable vorticity, there is an explicit condition that ensures the existence of local
bifurcation. For surface shears with positive shear value γ0 this sufficient condition
for local bifurcation is that the following inequality is satisfied:∫ 0

p0θ/100

{
(p − p0)

2

[
2γ0

(
p − p0θ

100

)]1/2

+

[
2γ0

(
p − p0θ

100

)]3/2}
dp < gp2

0. (5.1)

There is a similar inequality for negative γ0. The θ, γ0 pairs given by θ = 5 and
γ0 = 1 or 18 satisfy this sufficient condition for local bifurcation for both p0 = −2
and p0 = −4. However, our computations suggest that this condition (5.1) is far from
being necessary. For p0 = −2 and θ = 2 %, for example, we have successfully found
the existence of a bifurcating curve for shear values much larger than that given by
(5.1), ending at the wave shown in figure 7.

For the case of constant positive vorticity γ , however, there is a necessary and
sufficient condition for local bifurcation given by

tanh

√
2|p0|

γ
�

2|p0|γ
g + γ

√
2|p0|γ

. (5.2)

This case adequately illustrates the effect of the flux. Condition (5.2) is always satisfied
for p0 = −2 and constant γ > 0, which in turn ensures a bifurcating curve even for
large γ . Varying p0, we find that as |p0| increases, the range of positive γ for which
the inequality is satisfied shrinks rapidly. For instance, when p0 = −4, only γ � 2.435
satisfies this inequality; when p0 = −6, the range reduces to γ � 1.185. In seeking γcrit

(the value of γ separating the cases where the location of the first stagnation occurs
at the top or at the bottom) for larger values of p0, we have on one hand a general
observation that γcrit should decrease as |p0| increases and on the other hand the
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p0 γcrit amax

−1 3.25 0.54
−2 2.96 0.85
−3 2.55 0.98

Table 2. γcrit and amax as functions of p0.
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Figure 18. Amplitude (◦) and depth (×) plots for γcrit(p0). Both amplitude and depth
increase as functions of |p0|. (a) R0 = −1, (b) −2, (c) −3.

precise upper bound (5.2) for γ beyond which there is no bifurcating curve at all. It
is possible that γcrit does not exist because stagnation occurs only at the crest.

In our computations, we are able to find a value for γcrit for |p0| � 3. For such p0, the
observations that we specified in the beginning of this section hold. Namely, we find
that γcrit is decreasing as a function of |p0|; in this case, we find that γcrit(p0 = −1) ≈
3.25, γcrit(p0 = −2) ≈ 2.96, and γcrit(p0 = −3) ≈ 2.55. Furthermore, considering amax

as a function of |p0|, we find that amax is an increasing function of |p0| as seen
in figure 18. Specifically, we find that amax(p0 = −1) = 0.54, amax(p0 = −2) = 0.85, and
amax(p0 = −3) = 0.98. Thus, the tallest waves become taller as the flux of fluid increases,
which is intuitively expected.

Several people were crucial to the success of this project. Our computer wizard,
Joshua Bronson, set up the interface with Trilinos for us. Andrew Salinger of
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Sandia National Laboratories generously lent us his expertise concerning Trilinos
and numerical bifurcation. Adrian Constantin has been a close collaborator on the
analytical aspects of water waves. Tetsu Hara has provided us with the perspective
of the oceonography community.
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